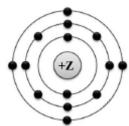

Демонстрационный вариант диагностической проверочной работы по химии

для учащихся 11 класса.

2022 – 2023 учебный год

1. Из курса химии Вам известны следующие способы разделения смесей: отстаивание, фильтрование, дистилляция (перегонка), действие магнитом, выпаривание, кристаллизация. На рисунках 1–3 представлены примеры использования некоторых из перечисленных способов.



Каким из способов, которые показаны на рисунках, можно разделить смеси, чтобы очистить:

- 1) раствор хлорида натрия от осадка гидроксида железа(III);
- 2) уксусную кислоту, содержащуюся в столовом уксусе, от воды?

Смесь	Номер рисунка	Способ разделения смеси
Раствор хлорида натрия и		
осадок гидроксида железа(III)		
Уксусная кислота и вода		

2. На рисунке изображена модель атома некоторого химического элемента.

Рассмотрите предложенную модель и выполните следующие задания:

- 1) запишите в таблицу символ химического элемента, которому соответствует данная модель атома;
- 2) запишите номер периода и номер группы в Периодической системе химических элементов Д. И. Менделеева, в которых расположен этот элемент;
- 3) определите, к металлам или неметаллам относится простое вещество, которое образует этот элемент.

Символ химического	№ периода	№ группы	Металл/неметалл	
элемента	ж периода	Nº 1 pyllilbi		

3. Периодическая система химических элементов Д. И. Менделеева — богатое хранилище информации о химических элементах, их свойствах и свойствах их соединений, о закономерностях изменения этих свойств, о способах получения веществ, а также о нахождении их в природе. Так, например, известно, что с увеличением порядкового номера химического элемента в периодах радиусы атомов уменьшаются, а в группах увеличиваются.

Учитывая эти закономерности, расположите в порядке уменьшения радиуса атомов следующие элементы: N, Al, C, Si. Запишите обозначения элементов в нужной последовательности.

Ответ:	

4. В приведённой ниже таблице перечислены характерные свойства веществ, которые имеют молекулярное и ионное строение.

Молекулярного строения	Ионного строения		
- при обычных условиях имеют жидкое,	- твёрдые при обычных условиях;		
газообразное и твёрдое агрегатное	- хрупкие;		
состояние;	- тугоплавкие;		
- имеют низкие значения температур	- нелетучие;		
кипения и плавления;	- в расплавах и растворах проводят		
- неэлектропроводные;	электрический ток		
- имеют низкую теплопроводность			

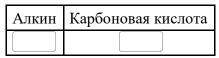
Используя	данную	информацию,	определите,	какое	строение	имеют	вещества	диоксид
азота (NO	2) и соль	сульфат никеля	ı (NiSO ₄).					
Ответ:								

5. Сложные неорганические вещества можно классифицировать по четырём группам, как показано на схеме. В эту схему для каждой из четырёх групп впишите по одной химической формуле веществ из числа тех, о которых говорится в приведённом тексте.

Сложные вещества

оксид	основание	кислота	соль

Xимические формулы запишите в таблицу в следующем формате: $Al_2(SO_4)_3$.


Прочитайте следующий текст и выполните задания 5—7.

Металл железо известен человеку ещё с глубокой древности. Использовать изделия из него начали ещё в начале 1-го тысячелетия до н.э. В Древнем Египте железо называли «небесный металл», его древнегреческое название означает «звёздный», а древнеримское переводится как «капнувший с неба». Такое название металла объяснялось очень просто: в древности люди не умели добывать соединения железа и получать из них металл, а использовали только метеоритное железо, то есть буквально железо, упавшее с неба. Широкое использование железа не прекращается и в настоящее время. Известно, что в самородном виде в природе железо практически не встречается, однако его соединения, такие как гематит (Fe_2O_3), магнетит (Fe_3O_4) и пирит, широко распространены. Из этих соединений металл и получают в настоящее время. Один из способов получения железа заключается в восстановлении его оксида под действием оксида углерода(II) (CO) при высокой температуре. В чистом виде железо представляет собой серебристо-серый тугоплавкий металл, обладающий превосходными механическими свойствами: большой прочностью и способностью прокатываться, протягиваться и штамповаться. В основном этот металл используют в виде сплавов – чугуна, стали и др. Взаимодействие железа и оксидов железа с кислотами (например, HCl, H2SO4) приводит к образованию солей, которые также широко применяются. Так, например хлорид железа(III) (FeCl₃) используется при

окраші	ивании	тканей, п	ри произ	вводстве кр	асящих	ПИГМ	ентов,	в ка	честве	коагул	янта
при оч	истке во	ды. Суль	фат желе:	sa(II) (FeS	О4) исп	ользує	тся пр	и окр	ашиван	нии тка	ни и
шерсти	и, в сель	ском хозя	яйстве и	в медицине	е. При в	заимод	цействи	ии су	льфата	железа	(II)
с гидј	роксидо	м калия	(KOH)	образуется	я гидро	ксид	желез	a(II)	(Fe(C	$(H)_2).$	Это
соедин	пение исп	пользуетс	я при изг	отовлении:	железо-н	никеле	вых ак	куму	ляторо	В.	

6. 1). Составьте молекулярное уравнение реакции гематита с оксидом углерода (II); 2). Укажите, является ли эта реакция окислительно-восстановительной или она протекает без изменения степеней окисления. Ответ:
7. 1). Составьте молекулярное уравнение упомянутой в тексте реакции между сульфатом железа (II) и гидроксидом калия; 2). Укажите, к какому типу (соединения, разложения, замещения, обмена) относится эта реакция. Ответ:
8. При исследовании минерализации бутилированной воды в ней были обнаружены следующие катионы металлов: Na ⁺ , K ⁺ , Ca ²⁺ . Наличие одного из перечисленных ионов было доказано в результате добавления к воде раствора K ₂ CO ₃ . 1. Какое изменение наблюдается при проведении описанного опыта? (Концентрация веществ достаточна для проведения анализа). 2. Запишите сокращённое ионное уравнение протекающей химической реакции.
 9. Дана схема окислительно-восстановительной реакции:
10. Дана схема превращений: $P_2O_5 \to Ca_3(PO_4)_2 \to Ca(H_2PO_4)_2 \to Ca\ (NO_3)_2$ Напишите молекулярные уравнения реакций, с помощью которых можно осуществить указанные превращения. Ответ:

11. Из приведённого перечня выберите вещества, которые соответствуют указанным в таблице классам/ группам органических соединений. Запишите в таблицу номера, под которыми указаны эти соединения.

1)
$$CH_{3}$$
— CH — CH_{3} $_{2)}CH_{3}$ — CH_{2} — CH_{2}

OH

3) CH_{3} — $C\equiv CH$

4) CH_{3} — $CH=CH_{2}$
 OH

5) CH_{3} — CH_{2} — OH

12. В предложенные схемы химических реакций впишите структурные формулы пропущенных веществ, выбрав их из приведённого в 11 задании перечня. Расставьте коэффициенты в полученных схемах, чтобы получились уравнения химических реакций.

1)
$$+ H_2O \longrightarrow CH_3 \longrightarrow CH_3 \longrightarrow CH_3$$
O
$$+ CO_2 + H_2O \longrightarrow CH_3 \longrightarrow CH_3 \longrightarrow CH_3 \longrightarrow CH_2 \longrightarrow CH_3 \longrightarrow CH_3$$

13. Пропанол-1 применяют в качестве растворителя для восков, чернил, природных и синтетических смол, для синтеза пропионовой кислоты, пестицидов, некоторых фармацевтических препаратов. Пропанол-1 можно получить в соответствии с приведенной схемой превращений:

$$\overset{\text{CH}_2}{\text{CH}_2} \xrightarrow{\text{HCl, t}^{\circ}} X \xrightarrow{\text{CH}_3} \text{CH}_2 \text{-CH}_2 \text{-OH}$$

Впишите в заданную схему превращений структурную формулу вещества X, выбрав его из предложенного в 11 задании перечня. Запишите уравнения двух реакций, с помощью которых можно осуществить эти превращения. При написании уравнений реакций используйте структурные формулы органических веществ.

Otbet:	 	 	 _

14. Установите соответствие между формулой органического вещества и классом/группой, к которому(-ой) это вещество принадлежит: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

ФОРМУЛА ВЕЩЕСТВА	КЛАСС/ГРУППА
A). CH ₃ -CH ₂ -CH ₃	1) предельные углеводороды
Б). CH ₃ -CH=CH ₂	2) спирты
B). CH ₃ -CH ₂ -OH	3) непредельные углеводороды
	4) карбоновые кислоты

Ответ:

A	Б	В

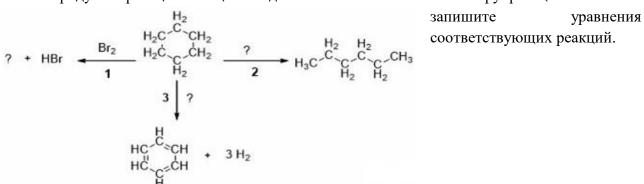
15. Часто в химии существует задача найти итоговое количество соли в растворе, полученном при смешивании двух растворов с разной концентрацией. Смешали два раствора: один массой 130 г и с массовой долей соли 6%, второй массой 70 г и с массовой долей этой же соли 2%. Чему равна масса соли, содержащейся в образовавшемся растворе?

Дано:	Решение:
Найти:	
	Ответ:

16. (лицей). Одним из важных понятий в экологии и химии является «предельно допустимая концентрация» (ПДК). ПДК — это такая концентрация вредного вещества в окружающей среде, присутствуя в которой постоянно, данное вещество не оказывает в течение всей жизни прямого или косвенного неблагоприятного влияния на настоящее или будущее поколение, не снижает работоспособности человека, не ухудшает его самочувствия и условий жизни.

ПДК хлора в воде бассейнов составляет 0.5 мг/м^3 .

Для хлорирования воды в дачном бассейне глубиной 1,5 м, шириной 3 м и длиной 8 м использовали 14,4 мг хлора. Определите и подтвердите расчётами, превышает ли концентрация хлора в воде данного бассейна значение ПДК. Предложите способ, позволяющий снизить концентрацию хлора в воде.


Дано:	Решение:				
Найти:					
1100000000	Ответ:				

17. (лицей). Прокаливанием перманганата калия можно получить кислород высокой чистоты.

Сколько граммов перманганата калия необходимо прокалить для получения 6,72 л (н.у.) кислорода? Ответ округлите с точностью до десятых.

Дано:	Решение:
И	
Найти:	Ответ:

18. (лицей). Циклогексан важное вещество в химической промышленности. Его используют для получения капролактама, бензола, циклогексанона и многого другого. В соответствии с приведённой ниже схемой замените знаки «?» на реагенты, катализаторы или продукты реакции. Вещества должны соответствовать номеру реакции. В ответе

Ответ:			